阿尔兹海默症中的 β 淀粉样蛋白和 Tau 蛋白 您所在的位置:网站首页 app 全称 阿尔兹海默症中的 β 淀粉样蛋白和 Tau 蛋白

阿尔兹海默症中的 β 淀粉样蛋白和 Tau 蛋白

2023-11-20 20:39| 来源: 网络整理| 查看: 265

用于 tau 蛋白研究的抗体及试剂盒

​​使用各种研究工具从各个角度研究 tau 蛋白,为 tau 蛋白病理学提供新的见解。从聚集抑制剂到试剂盒和抗体,您可一站式获得关于非缠结 tau 蛋白所需要的一切。

总 tau 蛋白检测

Tau 蛋白在正常脑组织中以可溶形式存在,但在 AD 患者的脑组织中,tau 蛋白为聚集和不溶性的。使用下表中的 BSA 和无叠氮化物抗体、抗体板或 ELISA 试剂盒可轻松检测总 tau 蛋白。

表4. 检测总 tau 蛋白的工具

试剂

推荐产品

ab 编号

总 tau 蛋白抗体

抗 Tau 蛋白抗体 [TAU-5] - BSA 和无叠氮化物

ab80579

Tau 蛋白抗体板

Tau 蛋白研究抗体板

ab226492

ELISA

人类 Tau 蛋白 ELISA 试剂盒

ab210972

注:研究不溶性 tau 可能存在问题,考虑使用清洁剂,如 RIPA 和 Sarkosyl。53

​​Tau 蛋白磷酸化

Tau 蛋白功能受磷酸化控制,病理期间磷酸化失调,导致错误定位、聚集和神经元死亡。使用针对不同翻译后修饰位点的抗体可轻松研究 tau 蛋白磷酸化的所有方面。

表5.研究 tau 蛋白磷酸化的工具

磷酸化位点

推荐产品

ab 编号

丝氨酸 202 和苏氨酸 205

抗 Tau(磷酸 S202 + T205)蛋白抗体 [EPR20390]

ab210703

苏氨酸 231

抗 Tau(磷酸 T231)蛋白抗体 [EPR2488]

ab151559

丝氨酸 262

抗 Tau(磷酸 S262)蛋白抗体

ab64193

丝氨酸 396

抗 Tau(磷酸 S396)蛋白抗体 [EPR2731]

ab109390

丝氨酸 422

抗 Tau(磷酸 S422)蛋白抗体 [EPR2866]

ab79415

​​浏览所有抗体以检测磷酸化 tau 蛋白。

如果您需要多种磷酸化 tau 蛋白抗体,请尝试使用我们的 Tau 蛋白抗体板 (ab226492)。

​Tao 蛋白聚集抑制剂

​​阿尔茨海默病等疾病的病理为存在聚集的 tau 蛋白。使用有效的 tau 蛋白聚集抑制剂可有效抑制神经原纤维缠结的形成。

小分子

活性

ab 编号

TRx0237 甲磺酸 (LMTX)

在小鼠中减轻 tau 蛋白的病理作用并逆转行为障碍。在体外和体内均具有活性。55

ab223882

AZD2858

S396 位点的 tau 蛋白磷酸化选择性 GSK-3 抑制剂 (IC50 = 68 nM)。56

ab223889

INDY

ATP 竞争性 Dyrk1A 抑制剂能够逆转 tau 蛋白磷酸化。57

ab223890

GSK-3β 抑制剂 VII

细胞可渗透性非 ATP 竞争性 GSK-3β 抑制剂 (IC50 = 0.5 µM)。58

ab145937

YM-01 (YM-1)

可有效降低异常 tau 蛋白水平的变构 Hsp70 调节剂 (EC50 ~ 0.9 μM)。59

ab146423

浏览所有 tau 蛋白抑制剂

浏览微管激活剂和抑制剂

Tau 蛋白与神经炎症

​错误折叠的蛋白质与神经变性疾病中的神经炎症之间存在复杂的相互作用。在神经炎症的背景下使用一系列研究促炎介质的工具研究 tau 蛋白。

工具

推荐产品

ab 编号

小鼠和人多重细胞因子板

人关键细胞因子 (15 plex) 多重免疫测定试剂盒

小鼠关键细胞因子 (14 plex) 多重免疫测定试剂盒

ab213392

ab213396

TNF α ELISA 试剂盒

小鼠 TNF α ELISA 试剂盒

ab208348

IL-1 β ELISA 试剂盒

小鼠 IL-1 β ELISA 试剂盒(白细胞介素-1β)

ab100704

IL-6 ELISA 试剂盒

高灵敏度人 IL-6 ELISA 试剂盒(白细胞介素-6)

ab46042

使用预先设计的检测板配置多种细胞因子,或进行自定义 - 了解更多关于 Fireplex 免疫测定的信息

在 90 分钟内获得结果 - 了解 SimpleStep ELISA® 试剂盒的范围

参考文献

2.           Allinson, T. M. J., Parkin, E. T., Turner, A. J. & Hooper, N. M. ADAMs Family Members As Amyloid Precursor Protein α-Secretases. Journal of Neuroscience Research (2003). doi:10.1002/jnr.10737

3.           Haass, C., Kaether, C., Thinakaran, G. & Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. (2012). doi:10.1101/cshperspect.a006270

4.           Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci. (1999). doi:10.1006/mcne.1999.0811

5.           Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature (1999). doi:10.1038/990114

6.           Vassar, R. et al. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science (80-. ). (1999). doi:10.1126/science.286.5440.735

7.           Francis, R. et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell (2002). doi:10.1016/S1534-5807(02)00189-2

8.           Levitan, D. et al. PS1 N- and C-terminal fragments form a complex that functions in APP processing and Notch signaling. Proc. Natl. Acad. Sci. (2001). doi:10.1073/pnas.211321898

9.           Steiner, H. et al. PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem. (2002). doi:10.1074/jbc.C200469200

10.        Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature (1999). doi:10.1038/19077

11.        Yu, G. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature (2000). doi:10.1038/35024009

12.        Ahmed, M. et al. Structural conversion of neurotoxic amyloid-Β 1-42 oligomers to fibrils. Nat. Struct. Mol. Biol. (2010). doi:10.1038/nsmb.1799

13.        Mayeux, R. et al. Plasma amyloid β-peptide 1-42 and incipient Alzheimer’s disease. Ann. Neurol. (1999). doi:10.1002/1531-8249(199909)46:33.0.CO;2-A

14.        Coppola, J. M. et al. Identification of inhibitors using a cell-based assay for monitoring Golgi-resident protease activity. Anal. Biochem. (2007). doi:10.1016/j.ab.2007.01.013

15.        Jeppsson, F. et al. Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of alzheimer disease. J. Biol. Chem. (2012). doi:10.1074/jbc.M112.409110

16.        Eketjäll, S. et al. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics. J. Alzheimer’s Dis. (2016). doi:10.3233/JAD-150834

17.        Kim, H. et al. Neuroprotective effect of loganin against Aβ25-35-induced injury via the NF-κB-dependent signaling pathway in PC12 cells. Food Funct. (2015). doi:10.1039/c5fo00055f

18.        May, P. C. et al. The Potent BACE1 Inhibitor LY2886721 Elicits Robust Central A  Pharmacodynamic Responses in Mice, Dogs, and Humans. J. Neurosci. (2015). doi:10.1523/jneurosci.4129-14.2015

19.        Paris, D. et al. The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-β production and Tau hyperphosphorylation. J. Biol. Chem. (2014). doi:10.1074/jbc.M114.608091

20.        Yan, R. Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl. Neurodegener. (2016). doi:10.1186/s40035-016-0061-5

21.        Castellani, R. J., Lee, H. G., Zhu, X., Perry, G. & Smith, M. A. Alzheimer disease pathology as a host response. Journal of Neuropathology and Experimental Neurology (2008). doi:10.1097/NEN.0b013e318177eaf4

22.        Knopman, D. S. et al. Neuropathology of Cognitively Normal Elderly. J. Neuropathol. Exp. Neurol. (2003). doi:10.1093/jnen/62.11.1087

23.        Schütz, A. K. et al. Atomic-resolution three-dimensional structure of amyloid b fibrils bearing the osaka mutation. Angew. Chemie - Int. Ed. (2015). doi:10.1002/anie.201408598

24.        Tycko, R. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance. Neuron (2015). doi:10.1016/j.neuron.2015.03.017

25.        Xiao, Y. et al. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. (2015). doi:10.1038/nsmb.2991

26.        Hatami, A., Albay, R., Monjazeb, S., Milton, S. & Glabe, C. Monoclonal antibodies against Aβ42 fibrils distinguish multiple aggregation state polymorphisms in vitro and in Alzheimer disease brain. J. Biol. Chem. (2014). doi:10.1074/jbc.M114.594846

27.        Lu, J. X. et al. XMolecular structure of β-amyloid fibrils in alzheimer’s disease brain tissue. Cell (2013). doi:10.1016/j.cell.2013.08.035

28.        Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science (80-. ). (2005). doi:10.1126/science.1105850

29.        Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed bf agent and host. Science (80-. ). (2006). doi:10.1126/science.1131864

30.        Pensalfini, A. et al. Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol. Dis. (2014). doi:10.1016/j.nbd.2014.07.011

31.        Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science (80-. ). (2003). doi:10.1126/science.1079469

32.        Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. (2007). doi:10.1186/1750-1326-2-18

33.        Kayed, R. et al. Annular protofibrils area structurally and functionally distinct type of amyloid oligomer. J. Biol. Chem. (2009). doi:10.1074/jbc.M808591200

34.        Kayed, R. et al. Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Aβ oligomers. Mol. Neurodegener. (2010). doi:10.1186/1750-1326-5-57

35.        Ballatore, C., Lee, V. M.-Y. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–72 (2007).

36.        Gu, Y., Oyama, F. & Ihara, Y. τ Is Widely Expressed in Rat Tissues. J. Neurochem. (2002). doi:10.1046/j.1471-4159.1996.67031235.x

37.        Trojanowski, J. Q., Schuck, T., Schmidt, M. L. & Lee, V. M. Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37, 209–215 (1989).

38.        Morris, M., Maeda, S., Vossel, K. & Mucke, L. The Many Faces of Tau. Neuron 70, 410–426 (2011).

39.        Mandelkow, E. M. et al. Structure, microtubule interactions, and phosphorylation of tau protein. Ann. N. Y. Acad. Sci. 777, 96–106 (1996).

40.        Noble, W., Hanger, D. P., Miller, C. C. J. & Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 4, 1–11 (2013).

42.        Gong, C.-X. & Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 15, 2321–8 (2008).

43.        Martin, L., Latypova, X. & Terro, F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int. 58, 458–471 (2011).

44.        Bloom, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71, 505–8 (2014).

45.        Zempel, H., Thies, E., Mandelkow, E. & Mandelkow, E.-M. Abeta Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines. J. Neurosci. 30, 11938–11950 (2010).

46.        Haass, C. & Mandelkow, E. Fyn-tau-amyloid: a toxic triad. Cell 142, 356–8 (2010).

47.        Ittner, L. M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397 (2010).

48.        Alberdi, E. et al. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47, 264–72 (2010).

49.        Bieschke, J. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol. 8, 93–101 (2012).

50.        Vingtdeux, V., Sergeant, N. & Buée, L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Front. Physiol. 3, 229 (2012).

51.        Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2010).

52.        Murray, M. E. et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 138, 1370–81 (2015).

53.        Forest, S. K., Acker, C. M., D’abramo, C. & Davies, P. Methods for measuring tau pathology in transgenic mouse models. J. Alzheimer’s Dis. (2013). doi:10.3233/JAD-2012-121354

55.        Panza, F. et al. Tau aggregation inhibitors: the future of Alzheimer’s pharmacotherapy? Expert Opin. Pharmacother. (2016). doi:10.1517/14656566.2016.1146686

56.        Marsell, R. et al. GSK-3 inhibition by an orally active small molecule increases bone mass in rats. Bone (2012). doi:10.1016/j.bone.2011.11.007

57.        Ogawa, Y. et al. Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nat. Commun. (2010). doi:10.1038/ncomms1090

58.        Conde, S., Pérez, D. I., Martínez, A., Perez, C. & Moreno, F. J. Thienyl and Phenyl α-Halomethyl Ketones: New Inhibitors of Glycogen Synthase Kinase (GSK-3β) from a Library of Compound Searching. J. Med. Chem. (2003). doi:10.1021/jm034108b

59.        Abisambra, J. et al. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol. Psychiatry (2013). doi:10.1016/j.biopsych.2013.02.027

浏览所有 tau 蛋白抑制剂

浏览微管激活剂和抑制剂



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有